Han Tongcheng

By  李勇    2024-09-19    Visited 10 times

Name:Tongcheng Han

Academic title:Professor

Research Area:

Geophysics, Rock Physics, Well-logging

Contact: hantc@upc.edu.cn

Research Interests:

Rock Physics, Multiphysics, Joint Elastic-Electrical Properties



Scholarly Activities

-Publications (First/Corresponding Authors Only)

[1] Han T.*, He H., Fu L.-Y., 2024, New insights into how temperature affects the electrical conductivity of clay-free porous rocks, Geophysical Journal International, 238: 313-320.

[2] Han T.*, Huang T., He H., Fu L.-Y., 2024, Slopes of the pressure dependent elastic-electrical correlations in artificial sandstones, Geophysical Journal International, 237: 1010-1017.

[3] Han T.*, Wang X., Fu L.-Y., Zhang Y., 2024, Variation of fracture parameters with pore pressure and its effects on the anisotropic electrical properties of fractured rocks, IEEE Transactions on Geoscience and Remote Sensing, 62: 5912811.

[4] Liu S., Han T.*, Fu L.-Y., 2024, Distribution of gas hydrate in fractured reservoirs: Implications from anisotropic elastic and electrical numerical simulations, Geophysical Journal International, 237: 838-848.

[5]孙浩, 韩同城*, 符力耘, 2024, 含随机正交裂缝层状岩石的地震波频散和衰减, 地球物理学报, doi: 10.6038/cjg2024R0673.

[6]Han T.*, He H., Fu L.-Y., 2023, An improved effective medium model for the electrical properties of granular rocks accounting for grain contact, Geophysical Journal International, 233: 86-92.

[7]Han T.*, Wang P., Fu L.-Y., 2023, Pressure-dependent joint elastic-electrical properties of calcite-cemented artificial sandstones, Geophysics, 88(1): MR15-MR24.

[8]Han T.*, Sun H., Wang P., Fu L.-Y., 2023, Pore pressure effects on the anisotropic joint elastic-electrical properties of artificial porous sandstones with aligned fractures, Geophysics, 88(4): MR229-MR239.

[9]Lu M., Han T.*, Wang P., Fu L.-Y., 2023, Permeability of artificial sandstones identified by their dual-pore structure, Geophysical Journal International, 234: 1422-1429.

[10]Liu S., Han T.*, Fu L.-Y., 2023, Laboratory insights into the effects of methane hydrate on the anisotropic joint elastic-electrical properties in fractured sandstones, Petroleum Science, 20: 803-814.

[11]Wang P., Han T.*, Fu L.-Y., 2023, Elastic and electrical properties of calcite-cemented artificial sandstones based on a new manufacturing method, Frontiers in Earth Science, 10: 1098466.

[12] Wang X., Han T.*, Fu L.-Y., 2023, Molecular dynamic simulation of the influence of layer charge characteristics on the anisotropic elastic properties of hydrated montmorillonites, Chemical Physics, 575: 112058.

[13]徐登辉, 韩同城*, 符力耘, 2023, 背景为各向异性的含裂缝岩石频散和衰减计算方法研究, 地球物理学报, 66(5): 2151-2166.

[14]Han T.*, Yan H., Fu L.-Y., Xu D., 2022, Effective medium modeling of the joint elastic-electrical properties of sandstones with partial water saturation, Geophysics, 87(3): MR129-MR137.

[15]Han T.*, Yan H., Fu L.-Y., Li F., 2022, Applicability of cross-property differential effective medium model to the joint elastic-electrical properties of reservoir sandstones, Geophysical Prospecting, 70: 1243-1251.

[16]Han T.*, Fu L.-Y., 2022, Do cracks improve the conductive ability of porous rocks?, Geophysical Prospecting, 70: 1556-1564.

[17]Han T.*, Yan H., Li B., Fu L.-Y., 2022, Pressure-dependent joint elastic-electrical properties in brine-saturated artificial sandstones with aligned penny-shaped cracks – Part I: Experimental results, Geophysical Journal International, 228: 1071-1082.

[18]Yan H., Han T.*, Fu L.-Y., Li B., 2022, Pressure-dependent joint elastic-electrical properties in brine-saturated artificial sandstones with aligned penny-shaped cracks – Part II: Theoretical modelling, Geophysical Journal International, 228: 1083-1097.

[19]Bao H., Han T.*, Fu L.-Y., 2022, Dielectric properties of porous rocks with partially saturated fractures from finite-difference modeling, Geophysics, 87(5): MR235-MR245.

[20]Li B., Han T.*, Fu L.-Y., Yan H., 2022, Pressure effects on the anisotropic electrical conductivity of artificial porous rocks with aligned fractures, Geophysical Prospecting, 70: 790-800.

[21]Wang X., Han T.*, Fu L.-Y., 2022, Anisotropic elastic properties of montmorillonite with different layer charge densities and layer charge distributions through molecular dynamic simulation, Frontiers in Earth Science, 10: 854816.

[22]Han T.*, Yu H., Fu L.-Y., 2021, Correlations between the static and anisotropic dynamic elastic properties of lacustrine shales under triaxial stress: Examples from the Ordos Basin, China, Geophysics, 86(4): MR191-MR202.

[23]Han T.*, Liu S., Fu L.-Y., Yan H., 2021, Understanding how overpressure affects the physical properties of sandstones, Geophysics, 86(4): MR203-MR210.

[24]Han T.*, Yan H., Fu L.-Y., 2021, A quantitative interpretation of the saturation exponent in Archie’s equations, Petroleum Science, 18: 444-449.

[25]Liu S., Han T.*, Fu L.-Y., 2021, Laboratory investigations of acoustic anisotropy in artificial porous rock with aligned fractures during gas hydrate formation and dissociation, Journal of Geophysical Research: Solid Earth, 126: e2021JB021678.

[26]Liu S., Han T.*, Fu L.-Y., 2021, Distribution of gas hydrate in fractured reservoirs: insights from anisotropic seismic measurements, Science China Earth Sciences, 64(5): 744-752.

[27]Xu D., Han T.*, Fu F.-Y., 2021, Seismic dispersion and attenuation in layered porous rocks with fractures of varying orientations, Geophysical Prospecting, 69: 220-235.

[28]Xu D., Han T.*, Fu F.-Y., 2021, Frequency-dependent seismic properties in layered and fractured rocks with partial saturation, Geophysical Prospecting, 69: 1716-1732.

[29]任舒波, 韩同城*, 符力耘, 颜韩, 2021, 压力对含裂缝岩石各向异性速度的影响研究, 地球物理学报, 64(7): 2504-2514.

[30]包宏帅, 韩同城*, 符力耘, 2021, 基于二维图像的数字岩心电导率计算方法研究, 地球物理学报, 64(5): 1733-1744.

[31]Han T.*, Yan H., Xu D., Fu L.-Y., 2020, Theoretical correlations between the elastic and electrical properties in layered porous rocks with cracks of varying orientations, Earth-Science Reviews, 211: 103420.

[32]Han T.*, Gurevich B., Fu L.-Y., Qi Q., Wei J., Chen X., 2020, Combined effects of pressure and water saturation on the seismic anisotropy in artificial porous sandstone with aligned fractures, Journal of Geophysical Research: Solid Earth, 125: e2019JB019091.

[33]Han T.*, Liu S., Xu D., Fu L.-Y., 2020, Pressure-dependent cross-property relationships between elastic and electrical properties of partially saturated porous sandstones, Geophysics, 85(3): MR107-MR115.

[34]Han T.*, Wei Z., Li F., 2020, How the effective pore and grain shapes are correlated in Berea sandstones: Implications for joint elastic-electrical modeling, Geophysics, 85(3): MR147-MR154.

[35]Han T.*, Wei Z., Fu L.-Y., 2020, Cementation exponent as a geometric factor for the elastic properties of granular rocks, Geophysics, 85(6): MR341-MR349.

[36] Yan H., Han T.*, Fu L.-Y., 2020, Theoretical models for the effective electrical conductivity of transversely isotropic rocks with inclined penny-shaped cracks, Journal of Geophysical Research: Solid Earth, 125: e2020JB020371.

[37]Xu D., Han T.*, Liu S., Fu F.-Y., 2020, Effects of randomly orienting penny-shaped cracks on the elastic properties of transversely isotropic rocks, Geophysics, 85(6): MR325-MR340.

[38]Liu S., Han T.*, Hu G., Bu Q., 2020, Dielectric behaviors of marine sediments for reliable estimation of gas hydrate saturation based on numerical simulation, Journal of Natural Gas Science and Engineering, 73: 103065.

[39]任舒波, 韩同城*, 符力耘, 2020, 不同压力下部分饱和砂岩纵波衰减的理论及实验研究, 地球物理学报, 63(7): 2722-2736.

[40]李博, 韩同城*, 符力耘, 2020, 基于数字岩芯的含裂隙储层砂岩介电性质研究, 地球物理学报, 63(12): 4578-4591.

[41]Han T.*, Xu D., Fu L.-Y., Li F., 2019, The role of spheroidal inclusions on the electrical anisotropy of transversely isotropic rocks, Geophysical Journal International, 218: 508-518.

[42]Han T.*, Yang S., 2019, Dielectric properties of fractured carbonate rocks from finite-difference modeling, Geophysics, 84(1): M37-M44.

[43]Han T.*, Josh M., Liu H., 2019, Effects of aligned fractures on the dielectric properties of synthetic porous sandstones, Journal of Petroleum Science and Engineering, 172: 436-442.

[44]Guo J.*, Han T.*, Fu L.Y., Xu D., Fang X., 2019, Effective elastic properties of rocks with transversely isotropic background permeated by aligned penny-shaped cracks, Journal of Geophysical Research: Solid Earth, 124: 2018JB016412.

[45]Han T.*, Beloborodov R., Pervukhina M., Josh M., Cui Y., Zhi P., 2018, Theoretical modeling of dielectric properties of artificial shales, Geofluids: 1-12.

[46]Han T.*, 2018, An effective medium approach to modelling the pressure dependent electrical properties of porous rocks, Geophysical Journal International, 214: 70-78.

[47]Han T.*, 2018, Joint elastic-electrical properties of artificial porous sandstone with aligned fractures, Geophysical Research Letters, 45: 3051-3058.

[48]Han T.*, Liu B., Sun J., 2018, Validating the theoretical model for squirt-flow attenuation in fluid saturated porous rocks based on the dual porosity concept, Geophysical Journal International, 217: 1800-1807.

[49]Han T.*, Yang Y.S., 2018, Numerical and theoretical simulations of the dielectric properties of porous rocks, Journal of Applied Geophysics, 159: 186-192.

[50]Yu H.*, Wang Z., Rezaee R., Zhang Y., Han T.*, et al., 2018, Porosity estimation in kerogen-bearing shale gas reservoirs, Journal of Natural Gas Science and Engineering, 52: 575-581.

[51]Han T., Pervukhina M., Clennell M.B., Dewhurst D.N., 2017, Model based pore pressure prediction in shales: An example from the Gulf of Mexico, North America, Geophysics, 82(3): M37-M42.

[52]Han T.*, Clennell M.B., Pervukhina M., Josh M., 2016, Saturation effects on the joint elastic-dielectric properties of carbonates, Journal of Applied Geophysics, 129: 36-40.

[53]Han T., Clennell M.B., Cheng A.C.H., Pervukhina M., 2016, Are self-consistent models capable of jointly modeling elastic velocity and electrical conductivity of reservoir sandstones?, Geophysics, 81(4): D377-D382.

[54]Han T.*, Gurevich B., Pervukhina M., Clennell M.B., 2016, Linking the pressure dependency of elastic and electrical properties of porous rocks by a dual porosity model, Geophysical Journal International, 205: 378-388.

[55]Han T.*, 2016, A simple way to model the pressure dependency of rock velocity, Tectonophysics, 675: 1-6.

[56]Han T.*, Best A.I., Sothcott J., North L.J., MacGregor L.M., 2015, Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones, Journal of Applied Geophysics, 112: 279-289.

[57]Han T.*, Clennell M.B., Pervukhina M., 2015, Modelling the low-frequency electrical properties of pyrite-bearing reservoir sandstones, Marine and Petroleum Geology, 68: 341-351.

[58]Han T., Clennell M.B., Josh M., Pervukhina M., 2015, Determination of effective grain geometry for electrical modeling of sedimentary rocks, Geophysics, 80(4): D319-D327.

[59]Han T.*, Liu B., Kan G., Meng X., Ding Z., 2012, Joint elastic-electrical properties of sediments in the Yellow Sea, Science China Earth Sciences, 55: 143-148.

[60]Han T.*, Best A.I., Sothcott J., MacGregor L.M., 2011, Pressure effects on the joint elastic-electrical properties of reservoir sandstones, Geophysical Prospecting, 59: 506-517.

[61]Han T.*, Best A.I., Sothcott J., MacGregor L.M., 2011, Joint elastic-electrical properties of reservoir sandstones and their relationships with petrophysical parameters, Geophysical Prospecting, 59: 518-535.

[62]Han T.*, Best A.I., MacGregor L.M., Sothcott J., Minshull T.A., 2011, Joint elastic-electrical effective medium models of reservoir sandstones, Geophysical Prospecting, 59: 777-786.

-Research Project

[1] National Natural Science Foundation of China (No. 42174136).

[2] National Natural Science Foundation of China (No. 41874151).

[3] Shandong Provincial Natural Science Foundation for Distinguished Young Scientists (ZR2021JQ14).